

International Advanced Research Journal in Science, Engineering and Technology ISO 3297:2007 Certified

Vol. 3, Issue 8, August 2016

On ΠG^AB*- Closed Sets in Topological Spaces

Nathiya .B¹, Vaiyomathi .K²

M.Phil Research Scholar, Department of Mathematics, Nirmala College for Women, Coimbatore, India¹

Assistant Professor, Department of Mathematics, Nirmala College for Women, Coimbatore, India²

Abstract: In this Paper we introduce a new class of sets called π generalized ^ b*-closed set (briefly π g^b*-closed) and some of its characteristics are investigated. Further we studied the concepts of πg^{b*} -open sets and πg^{b*} - $T_{1/2}$ space.

Key words: πg^{b*} -closed sets, πg^{b*} -open sets, πg^{b*} - $T_{1/2}$ space, πg^{b*} -closure operator.

I. INTRODUCTION

Levine[11] and Andrijevic[3] introduced the concept of semi-closed (resp. α -closed, pre-closed, semipre-closed, generalized open sets and b-open sets respectively in regular-closed and b-closed) subsets of (X,τ) containing A topological spaces. The class of b-open sets is contained in is called the semi-closure (resp. α -closure, pre-closure, the class of semipre-open sets and contains the class of semipre-closure, regular-closure and b-closure) of A and is semi-open and the class of pre-open sets. Since then several researches were done and the notion of generalized semi-closed, generalized pre-closed and generalized semipre-open sets were investigated. In 1968 Zaitsev[19] defined π -closed sets. Later Dontchev and Noiri[8] introduced the notion of π g-closed sets. Park[15] defined π gp-closed sets. Then Aslim, Caksu and Noir[4] introduced the notion of π gs-closed sets. The idea of π gbclosed sets were introduced by D.Sreeja and C. Janaki[18]. A subset A of a space (X,τ) is called Later the properities and characteristics of π gb-closed sets (1) a g-closed set if cl(A) \subset U whenever A \subset U and U is were introduced by Sinem Caglar and Gulhan Ashim[17]. The aim of this paper is to investigate the notion of πg^{b*} closed sets and its properties. In section 3 we study the basic properties of πg^{b*} -closed sets. In section 4 some characteristics of πg^b^* -closed sets are introduced and the idea of $\pi g^b*-T_{1/2}$ space is discussed.

II. PRELIMINARIES

Throughout this paper (X,τ) represents non empty (6) topological spaces on which no separation axioms are assumed unless otherwise mentioned. A subset A of a (7) topological space (X,τ) , cl(A) and int(A) denote the closure of A and interior of A respectively. (X,τ) will be (8) a π gp-closed set if pcl(A) \subset U whenever A \subset U and U is replaced by X if there is no chance of confusion.

Definiton: Let (X,τ) be a topological space. A subset A of (9) a π gs-closed set if scl(A) \subset U whenever A \subset U and U is (X,τ) is called

- (1) a semi-closed set if $int(cl(A)) \subseteq A$.
- (2) a α -closed set if cl(int(cl(A))) \subseteq A.
- (3) a pre-closed set if $cl(int(A)) \subseteq A$.
- (4) a semipre-closed set if $int(cl(int(A))) \subseteq A$.
- (5) a regular-closed set if A=cl(int(A)).
- (6) a b-closed set if $cl(int(A))\cap int(cl(A))\subseteq A$.
- (7) a b*-closed set if $int(cl(A)) \subset U$, whenever $A \subset U$ and U is b-open.

the complements of the above mentioned sets are called Definition semi-open, α -open, pre-open, semi-open, regular open, b- Let (X,τ) be a topological space then a set $A \subseteq (X,\tau)$ is said open, b*-open sets respectively. The intersection of all

denoted by scl(A) (resp. acl(A), pcl(A), spcl(A), rcl(A)and bcl(A)). A subset A of (X,τ) is called clopen if it is both open and closed in (X,τ) .

Definition

A subset A of a space (X,τ) is called π -closed if A is finite intersection of regular closed sets.

Definition

- open in (X,τ) .
- (2) a gp-closed set if $pcl(A) \subset U$ whenever $A \subset U$ and U is open in (X,τ) .
- a gs-closed set if $scl(A) \subset U$ whenever $A \subset U$ and U is (3) open in (X,τ) .
- (4) a gb-closed set if $bcl(A) \subset U$ whenever $A \subset U$ and U is open in (X,τ) .
- (5) a ga-closed set if $\alpha cl(A) \subset U$ whenever $A \subset U$ and U is open in (X,τ) .
- a π g-closed set if cl(A) \subset U whenever A \subset U and U is π -open in (X, τ).
- a π g α -closed set if α cl(A) \subset U whenever A \subset U and U is π -open in (X,τ) .
- π -open in (X, τ).
- π -open in (X, τ).
- (10) a π gb-closed set if bcl(A) \subset U whenever A \subset U and U is π -open in (X, τ).

Complement of π -closed set is called π -open set.

Complement of g-closed, gp-closed, gs-closed, gb-closed, ga-closed, π ga-closed, π gp-closed, π gs-closed and π gbclosed sets are called g-open, gp-open, gs-open, gb-open, ga-open, π ga-open, π gp-open, π gs-open and π gb-open sets respectively.

to be Q-set if int(cl(A))=cl(int(A)).

International Advanced Research Journal in Science, Engineering and Technology

ISO 3297:2007 Certified

Vol. 3, Issue 8, August 2016

III. πg[^]b*-CLOSED SETS IN TOPOLOGICAL SPACES

Definition

A subset A of a space (X, τ) is called πg^b^* -closed set if int(bcl(A)) \subset U whenever A \subset U and U is πg -open in (X, τ) .

Theorem: 3.1

Every g-closed set is πg^{b*} -closed.

Proof

Let A be a g-closed set of (x,τ) such that $A \subseteq U$ and U is π g-open in X. Since $cl(A) \subset U$. As $bcl(A) \subset cl(A) \subset U$, $int(bcl(A)) \subseteq int(U) = U$. Hence A is π g^{^b}*-closed.

Remark: 3.1

The converse of the above theorem is not true as seen from the following example.

Example: 3.1

Let $X=\{a,b,c\}$ and $\tau=\{X,\Phi,\{a\},\{b\},\{a,b\}\}$. Let $A=\{\{a\},\{b\}\}$. Then A is πg^b* -closed but not g-closed.

Theorem: 3.2

Every π -closed set is πg^{b*} -closed.

Proof

Let A be a π -closed set and A \subseteq U, U is π g-open. since π cl(A)=A, int(bcl(A)) $\subset \pi$ cl(A)=A, therefore int(bcl(A)) \subset A whenever A \subset U and U is π g-open. Hence A is π g^b*-closed.

Remark: 3.2

The converse of the above theorem is not true as seen from the following example.

Example: 3.2

Let $X=\{a,b,c,d\}$ and $\tau=\{X,\Phi,\{a\},\{b\},\{a,b\},\{b,c\},\{a,b,c\},\{a,b,d\}\}$. Let $A=\{\{a,c,d\},\{a,c\}\}$. Then A is πg^b^* -closed but not π -closed.

Theorem: 3.3

Every closed set is πg^b^* -closed.

Proof

Let A be a closed set of (x,τ) such that $A \subseteq U$ and U is πg -open in X. since $bcl(A) \subset cl(A) = A$, $int(bcl(A)) \subset int(A) \subseteq int(U) = U$. Hence A is πg^{b*} -closed.

Remark: 3.3

The converse of the above theorem is not true as seen from the following example.

Example: 3.3

Let $X=\{a,b,c\}$ and $\tau=\{X,\Phi,\{a\},\{b\},\{a,b\}\}$. Let $A=\{b\}$. Then A is πg^{b*} -closed but not closed.

Theorem: 3.4

Every α -closed set is πg^b^* -closed.

Proof

Let A be a α -closed set of (x,τ) such that A \subseteq U and U is π g-open in X. Since bcl(A) $\subset \alpha$ cl(A) = A, int(bcl(A)) \subset int(A) \subseteq int(U) = U. Hence A is π g[^]b*-closed.

Remark: 3.4

The converse of the above theorem is not true as seen from the following example.

Example: 3.4

Let $X=\{a,b,c\}$ and $\tau=\{X,\Phi,\{a\},\{b\},\{a,b\}\}$. Let $A=\{a\}$. Then A is πg^b* -closed but not α -closed.

Theorem: 3.5

Every pre closed set is πg^{b*} -closed.

Proof

Let A be a pre closed set of (x,τ) such that $A \subseteq U$ and U is πg -open in X. Since $bcl(A) \subset pcl(A) = A$, $int(bcl(A)) \subset int(A) \subseteq int(U) = U$. Hence A is $\pi g^{A}b^{*}$ -closed.

Remark: 3.5

The converse of the above theorem is not true as seen from the following example.

Example: 3.5

Let $X=\{a,b,c,d\}$ and $\tau=\{X,\Phi,\{a\},\{d\},\{a,d\},\{c,d\},\{a,c,d\}\}$. Let $A=\{c,d\}$. Then A is π gb**-closed but not pre closed.

Theorem: 3.6

Every gb-closed set is πg^{b*} -closed.

Proof

Let A be a gb-closed set of (x,τ) such that A \subseteq U and U is π g-open in X. since every π g-open set is open. bcl(A) \subset U. Thus int(bcl(A)) \subseteq int(U) = U. Hence A is π g[^]b*-closed.

Remark: 3.6

The converse of the above theorem is not true as seen from the following example.

Example: 3.6

Let $X=\{a,b,c,d\}$ and $\tau=\{X,\Phi,\{b\},\{c,d\},\{b,c,d\}\}$. Let $A=\{b,d\}$. Then A is πgb^{**} -closed but not α -closed.

Theorem: 3.7

Every $\pi g\alpha$ -closed set is πg^b^* -closed.

Proof

Let A be a $\pi g\alpha$ -closed set of (x,τ) such that $A \subseteq U$ and U is πg -open in X. Then $\alpha cl(A) \subset U$, $bcl(A) \subset \alpha cl(A) \subset U$, $int(bcl(A)) \subset int(A) \subseteq int(U) = U$. Hence A is $\pi g^{h}b^{*}$ -closed.

Remark: 3.7

The converse of the above theorem is not true as seen from the following example.

Example: 3.7

Let $X=\{a,b,c\}$ and $\tau=\{X,\Phi,\{a\},\{b\},\{a,b\},\{a,c\}\}$. Let $A=\{a\}$. Then A is πg^b* -closed but not $\pi g\alpha$ -closed.

IARJSET

International Advanced Research Journal in Science, Engineering and Technology ISO 3297:2007 Certified

Vol. 3, Issue 8, August 2016

Theorem: 3.8

Every πg^b^* -closed set is πgb -closed.

Proof

Let A be a πg^b^* -closed set of (x, τ) such that A $\subseteq U$ and U is π -open in X. since A is πg^{h} -closed set, $bcl(A) \subseteq U$ and, hence $bcl(A) \subseteq U$. Then A is πgb -closed.

Remark: 3.8

The converse of the above theorem is not true as seen from the following example.

Example: 3.8

Let $X = \{a, b, c, d\}$ and $\tau = \{X, \Phi, \{a\}, \{b\}, \{a, b\}, \{a, b, c\}, \{a, b, d\}\}$. Let $A = \{a, b, c\}$. Then A is π gb-closed but not π g^h*-closed.

Theorem: 3.9

Every πg^b^* -closed set is πgs -closed.

Proof

Let A be a πg^b^* -closed set of (x,τ) such that A \subseteq U and U **Example 4.1** is π -open in X. since A is πg^b^* -closed set, intbcl(A) $\subseteq U$ Let and, hence $bcl(A) \subseteq scl(A) \subseteq U$, $bcl(A) \subseteq U$. Then A is πgs - $\tau = \{X, \Phi, \{a\}, \{b\}, \{a, c\}\}$. Let $A = \{a\}$ and $B = \{b\}$ then closed.

Remark: 3.9

The converse of the above theorem is not true as seen from Remark 4.2 the following example.

Example: 3.9

Let $X=\{a,b,c,d\}$ and $\tau=\{X,\Phi,\{b\},\{b,c\}\}$. Let $A=\{a,b,d\}$. Example 4.2 Then A is π gs-closed but not π gb**-closed.

Remark: 3.10

The concept of π gp-closed set and π g^{b*}-closed set are independent of each other. It is shown in the following example.

Example: 3.10

Let $X = \{a, b, c\}$ and $\tau = \{X, \Phi, \{a\}, \{b\}, \{a, b\}, \{a, c\}\}$. In this topological space the subset $A = \{a, b\}$ is πgp -closed but not **Proof** πg^b *-closed set and the subset B={a} is πg^b *-closed Let A be a πg^b *-closed set in (X, τ) and F \subset int(bcl(A))-A but not π gp-closed set.

Remark: 3.11

The concept of πg -closed set and πg^{h} -closed set are independent of each other. It is shown in the following example.

Example: 3.11

 $X = \{a, b, c, d\}$ {X, Let and $\tau =$ $\{a\},\{b\},\{a,b\},\{b,c\},\{a,b,c\},\{a,b,d\}\}$. In this topological space the subset A={a,d} is π g-closed but not π g^b*closed set and the subset B={a} is πg^b^* -closed but not πg^b^* -closed, π g-closed set.

The above discussions are summarized in the following Theorem 4.3 diagram

(1) πg^{b*} -closed set, (2) g-closed set, (3) π -closed set, (4) closed set, (5) α -closed set, (6) pre-closed set, (7) gbclosed set, (8) π ga-closed set, (9) π gb-closed set, (10) π gsclosed set, (11) π gp-closed set, (12) π g-closed set.

IV. CHARACTERISTICS OF πg^b^* -CLOSED SETS

Remark 4.1

Finite union of πg^{b*} -closed sets need not be πg^{b*} closed which can be seen the following example.

 $X = \{a, b, c\}$ with topology both A and B are πg^{b*} -closed. But, AUB={a,b} is not πg^b^* -closed.

Finite intersection of πg^{b*} -closed sets need not be πg^{b*} -closed which can be seen the following example.

 $X = \{a, b, c, d\}$ Let with topology $\tau = \{X, \Phi, \{a\}, \{b\}, \{a, b\}, \{a, b, c\}, \{a, b, d\}\}$. Let A= $\{b, d\}$ and B={b,c,d} then both A and B are πg^{h} -closed. But, $A \cap B = \{b,d\}$ is not πg^b^* -closed.

Theorem 4.1

Let (x,τ) be a topological space if $A \subset X$ is πg^{h*} -closed set then int(bcl(A))-A does not contain any non empty πg closed set.

such that F is π g-closed in X. Then (X-F) is π g-open in X and A \subseteq (X-F). since A is πg^b^* -closed, int(bcl(A)) \subset (X-F) \Rightarrow $F \subset (X-int(bcl(A)))$ therefore $F \subset (int(bcl(A))-A) \cap (X-int(bcl(A)))$ $int(bcl(A))) \Rightarrow F = \Phi$. Therefore int(bcl(A)) - A does not contain any non empty πg -closed set.

Theorem 4.2

If A is a πg^{h} -closed and B is any set such that Φ , A \subseteq B \subseteq int(bcl(A)), then B is a π g^{b*}-closed.

Proof

Let $B \subseteq U$ and U be πg -open. since $A \subseteq B \subseteq U$ and A is $int(bcl(A)) \subseteq U.$ Now $int(bcl(B))\subseteq int(bcl(A))\subseteq U$. Hence B is $\pi g^{h}b^{*}$ -closed.

Let (X,τ) be a topological space if $A \subset X$

International Advanced Research Journal in Science, Engineering and Technology

ISO 3297:2007 Certified Vol. 3, Issue 8, August 2016

Definition: 4.1

A set A \subset X is called πg^b^* -open if and only if its V $\cap A \neq \Phi$ for every πg^b^* -open set V containing x. complement is πg^b^* -closed in X.

Theorem 4.4

A subset $A \subseteq X$ is πg^b^* -open if and only if $F \subseteq cl(bint(A))$ whenever F is π g-closed and F \subseteq A.

Proof

Assume that $A \subseteq X$ is πg^b^* -open set in X. Let F be πg closed such that $F \subseteq A$. Then (X-A) \subset (X-F), since (X-A) is πg^{h*} -closed and (X-F) is πg -open, int(bcl(X-A)) \subseteq (X-F) \Rightarrow (X-cl(bcl(A))) \subseteq (X-F). Hence F \subseteq cl(bcl(A)). Conversely, assume that F is π g-closed and F \subseteq A such that $F \subseteq cl(bcl(A))$. Let (X-A) $\subseteq U$, where U is πg -open. Then $(X-U)\subseteq A$ and since $(X-U)\subseteq cl(bcl(A)) \Rightarrow int(bcl(X-A))\subseteq U$. Hence (X-A) is πg^b^* -closed and A is πg^b^* -open.

Theorem 4.5

If $cl(bint(A)) \subseteq B \subseteq A$ and A is πg^{b*} -open, then B is A. $int(bcl(A))\subseteq int(A)=A$. πg^b^* -open.

Proof

Let F be a π g-closed set such that F \subseteq B. Since B \subseteq A we get F⊆A. Given А is πg^b*open thus $F \subseteq cl(bint(A)) \subseteq cl(bint(B))$. Therefore B is πg^{b*} -open.

Definition 4.2

A space (X, τ) is called a $\pi g^{b*}-T_{1/2}$ space if every $\pi g^{b*}-T_{1/2}$ closed set is b*-closed.

Theorem 4.6

For a topological space (X,τ) the following are equivalent X is $\pi g^{b*}-T_{1/2}$ 1)

 \forall subset A \subseteq X, A is πg^b^* -open if and only if A 2) is b*-open.

Proof

$(1) \Rightarrow (2)$

by (1). (X-A) is b*-closed \Rightarrow A is b*-open. conversely assume A is b*-open. Then (X-A) is b*-closed. As every [11] Levine N., "Generalised closed sets in topology", Rend. Circ. Mat. b*-closed set is πg^b^* -closed, (X-A) is πg^b^* -closed $\Rightarrow A$ is πg^b *-open. (2) \Rightarrow (1)

Let A be a πg^{b*} -closed set in X. Then (X-A) is πg^{b*} open. Hence by (2) (X-A) is b*-open \Rightarrow A is b*-closed. Hence X is $\pi g^b *-T_{1/2}$.

Theorem 4.7

Let (X,τ) be a $\pi g^{b*}-T_{1/2}$ space then every singleton set is [16] Sarsak. M.S., and Rajesh. N., " π -generalized Semi-Preclosed Sets"., either π g-closed or b*-open.

Proof

Let $x \in X$ suppose $\{x\}$ is not πg -closed. Then X- $\{x\}$ is not πg-open. Hence X-{x} is trivially πg^b*-closed. Since X [18] Sreeja. D and Janaki .C., "On πgb-closed sets in Topological is $\pi g^{b*}-T_{1/2}$ space, X-{x} is b*-closed \Rightarrow {x} is b*-open.

Definition 4.3

Definition 4.3 bicompactifications"., Dokl.Akad.Nauk.SSSR., 178, 778-779, 1968. The intersection of all πg^{h} b*-closed set containing A is [20] Zinah. T. Alhawez., "On generalized b*-closed sets In Topological called the πg^b *-closure of A denoted by πg^b *-cl(A).

Theorem 4.8

Let $A \subseteq (X,\tau)$ and $x \in X$. Then $x \in \pi g^b^*-cl(A)$ if and only if

Proof

Suppose $x \in \pi g^b^*-cl(A)$ and let V be an πg^b^* -open set such that $x \in V$. Assume $V \cap A = \Phi$, then $A \subset X/V \Rightarrow \pi gb^{**}$ $cl(A) \subset X/V \Rightarrow x \in X/V$, a contradiction. Thus $V \cap A \neq \Phi$ for every πg^{b*} -open set V containing x. To prove the converse suppose $x \notin \pi g^b^*-cl(A) \Rightarrow x \in X/\pi g^b^*$ cl(A)=V (say). Then V is a πg^{b*} -open and x \in V. Also since $A \subseteq \pi g^b^*-cl(A) \Rightarrow A \not\subset V \Rightarrow V \cap A = \Phi$. Hence the theorem.

Theorem 4.9

For set $A \subseteq (X,\tau)$ if A is πg -clopen then A is πg -open, Qset, πg^b^* -closed set.

Proof

Let A be π g-clopen. Then A is both π g-open and π gclosed. Hence A is both open and closed. Therefore, cl(int(A))=int(cl(A)), thus A is a Q-set. As $bcl(A)\subseteq cl(A)$ -

REFERENCES

- Ahmad-Al-Omari and Mohd. Salmi Md Noorani., "On generalized [1] sets", Bulletin Mathematical b-closed of Sciences society., Vol.32., pp.19-30, 2009.
- Andrijevic. D., "Semipre-open sets"., Mat. Vennik., Vol. 38, 24-32, 1986. Andrijevic. D., "On b-open sets" ., Mat Vesnik, 48, 59-64,1996. [2]
- [3]
- Aslim.G., Caksu Guler. A and Noiri. T, "On ngs-closed sets in [4] topological spaces", Acta Math. Hungar., 112(4) ,pp. 275-283,2006. Bhattacharya. P and Lahiri.B.K "Semi-generalised closed sets in
- [5] topology"., Indian Journal Math., 29(2)., pp.375-382,1987.
- [6] Dhanya. R , Parvathi A, "On ngb*-closed sets in Topological spaces", International journal of innovative Research in science, Engineering and Technology., 2319-8753.
- [7] Dontchev J., "On generalizing semi-pre-open sets", Mem. Fac. Sci. Kochi Univ. Ser. A. Math., Vol.16, pp. 35-48., 1995.
- Dontchev. J and Noiri. T., "Quasi Normal Spsces and π g-closed sets"., Acta Math. Hungar., Vol. 3., 211-219, 2000. [8]
- [9] Janaki C," Studies On nga-closed sets in topology"., Ph.D Thesis, Bharathiyar university, Coimbatore, 2009.
- Let A⊆X be πg^{b*}-open. Then (X-A) is πg^{b*}-closed and [10] Jeyanthi. V, Janaki. C and Soumya. F., "On π^c-closed sets in topological spaces"., Mathematics and computer science journal., Vol. 1., pp.37-34., 2016.
 - Palermo, Vol. 19, 8996, 1970.
 - [12] Levine. N, "Semi open sets and semi continuity in topological spaces"., Amer. Math. Monthly, 70., 1963.
 - [13] Muthuvel. S and Parimelazhagan., "b*-Closed sets in topological spaces"., Int. Journal of Math Analysis, Vol. 6, no. 47, 2317-2323, 2012.
 - [14] Njastad. O, "On some classes of nearly open sets"., pacific. J. math., 15, 1965.
 - [15] Park.J.H., "On *m*gp-closed sets in topological spaces"., Indian J. Pure. Appl. Mathematics.
 - International Mathematical Forum, Vol.5., pp.573-578., 2010.
 - [17] Sinem Caglar Akgun and Gulhan Aslim., "On ngb-closed sets and Related Topics"., Int. Journal of Mathematical Archieve., 3, 5, 1873-1884., 2012.
 - spaces", International Journal of Mathematical Archieve, 2, 8, 1314-1320, 2011.
 - [19] Zaitsev., "On certain classes of topological spaces and their
 - Spaces"., Ibn Al-Haitham Jour. For Pure and Appl. Sci., Vol. 28(3) 2015.