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I. INTRODUCTION

Levine[11] and Andrijevic[3] introduced the concept of
generalized open sets and b-open sets respectively in
topological spaces. The class of b-open sets is contained in
the class of semipre-open sets and contains the class of
semi-open and the class of pre-open sets. Since then
several researches were done and the notion of generalized
semi-closed, generalized pre-closed and generalized
semipre-open sets were investigated. In 1968 Zaitsev[19]
defined =-closed sets. Later Dontchev and Noiri[8]
introduced the notion of ng-closed sets. Park[15] defined
ngp-closed sets. Then Aslim, Caksu and Noir[4]
introduced the notion of ngs-closed sets. The idea of ngb-
closed sets were introduced by D.Sreeja and C. Janaki[18].
Later the properities and characteristics of mgb-closed sets
were introduced by Sinem Caglar and Gulhan Ashim[17].
The aim of this paper is to investigate the notion of tg”b*-
closed sets and its properties. In section 3 we study the
basic properties of mg”b*-closed sets. In section 4 some
characteristics of mg”b*-closed sets are introduced and the
idea of mg"b*-T,, space is discussed.

Il. PRELIMINARIES

Throughout this paper (X,r) represents non empty
topological spaces on which no separation axioms are
assumed unless otherwise mentioned. A subset A of a
topological space (X,t), cl(A) and int(A) denote the
closure of A and interior of A respectively. (X,t) will be
replaced by X if there is no chance of confusion.

Definiton: Let (X,1) be a topological space. A subset A of
(X,7) is called

(1)
(2)
(3)
(4)
(5)
(6)
()

a semi-closed set if int(cl(A))SA.

a a-closed set if cl(int(cl(A)))<SA.

a pre-closed set if cl(int(A))<SA.

a semipre-closed set if int(cl(int(A)))<SA.

a regular-closed set if A=cl(int(A)).

a b-closed set if cl(int(A))Nint(cl(A))SA.

a b*-closed set if int(cl(A))cU, whenever AcU and
U is b-open.

the complements of the above mentioned sets are called
semi-open, a-0pen, pre-open, semi-open, regular open, b-
open, b*-open sets respectively. The intersection of all
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semi-closed (resp. a-closed, pre-closed, semipre-closed,
regular-closed and b-closed) subsets of (X,t) containing A
is called the semi-closure (resp. a-closure, pre-closure,
semipre-closure, regular-closure and b-closure) of A and is
denoted by scl(A) (resp. acl(A), pcl(A), spcl(A), rcl(A)
and bcl(A)). A subset A of (X,1) is called clopen if it is
both open and closed in (X,7).

Definition

A subset A of a space (X,1) is called n-closed if A is finite
intersection of regular closed sets.

Definition

A subset A of a space (X,7) is called

(1) a g-closed set if cl(A)cU whenever AcU and U is
open in (X,1).

(2) a gp-closed set if pcl(A)cU whenever AcU and U is
open in (X,1).

(3) a gs-closed set if scl(A)cU whenever AcU and U is
open in (X,1).

(4) a gb-closed set if bcl(A)cU whenever AcU and U is
open in (X,1).

(5) a go-closed set if acl(A)cU whenever AcU and U is

open in (X,1).

a mg-closed set if cl(A)cU whenever AcU and U is

m-open in (X,T).

a mga-closed set if acl(A)cU whenever AcU and U

is m-open in (X,7).

(8) amgp-closed set if pcl(A)cU whenever AcU and U is

m-open in (X,7).

(9) a mgs-closed set if scl(A)cU whenever AcU and U is
m-open in (X,T).

(10) a mgb-closed set if bcl(A)cU whenever AcU and U is
m-open in (X,T).

(6)
(7)

Complement of n-closed set is called n-open set.
Complement of g-closed, gp-closed, gs-closed, gb-closed,
ga-closed, mga-closed, mgp-closed, mgs-closed and mgb-
closed sets are called g-open, gp-open, gs-open, gb-open,
ga-open, mTga-open, tgp-open, ngs-open and wgb-open sets
respectively.

Definition
Let (X,7) be a topological space then a set AS(X,7) is said
to be Q-set if int(cl(A))=cl(int(A)).
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1L ng"b*-CLOSED SETS IN TOPOLOGICAL
SPACES

Definition
A subset A of a space (X, 1) is called mg”b*-closed set if
int(bcl(A))cU whenever AcU and U is ng-open in (X, 1).

Theorem: 3.1
Every g-closed set is mg"b*-closed.

Proof

Let A be a g-closed set of (x,7) such that ACU and U is
ng-open in X. Since cl(A)cU. As bcl(A) < cl(A) c U,
int(bcl(A)) € int(U) = U. Hence A is ng"b*-closed.

Remark: 3.1
The converse of the above theorem is not true as seen from
the following example.

Example: 3.1
Let X={ab,c} and 1={Xd,{a},{b},{a,b}}. Let
A={{a},{b}}. Then A is mg”b*-closed but not g-closed.

Theorem: 3.2
Every n-closed set is ng”b*-closed.

Proof
Let A be a m-closed set and AcU, U is mg-open. since
ncl(A)=A, int(bcl(A))cncl(A)=A, therefore int(bcl(A))CA
whenever AcU and U is ng-open. Hence A is mg”b*-
closed.

Remark: 3.2
The converse of the above theorem is not true as seen from
the following example.

Example: 3.2

Let X={a,b,c,d} and
={X,D,{a},{b},{a,b},{b,c},{a,b,c},{a,b,d}}. Let
A={{a,c,d},{a,c}}. Then A is ng"b*-closed but not m-
closed.

Theorem: 3.3
Every closed set is mg"b*-closed.

Proof

Let A be a closed set of (x,7) such that ACU and U is ng-
open in X. since bcl(A) c cl(A) = A, int(bcl(A)) c int(A)
C int(U) = U. Hence A is ng”"b*-closed.

Remark: 3.3
The converse of the above theorem is not true as seen from
the following example.

Example: 3.3
Let X={a,b,c} and 1={X,®,{a},{b},{a,b}}. Let A={b}.
Then A is tg"b*-closed but not closed.

Theorem: 3.4
Every a-closed set is tg"b*-closed.
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Proof

Let A be a a-closed set of (x,1) such that ACU and U is
ng-open in X. Since bcl(A) c acl(A) = A, int(bcl(A)) <
int(A) < int(U) = U. Hence A is ng"b*-closed.

Remark: 3.4
The converse of the above theorem is not true as seen from
the following example.

Example: 3.4
Let X={a,b,c} and ={X,®,{a},{b},{a,b}}. Let A={a}.
Then A is ng”b*-closed but not a-closed.

Theorem: 3.5
Every pre closed set is mg”b*-closed.

Proof

Let A be a pre closed set of (x,t) such that ACU and U is
ng-open in X. Since bcl(A) < pcl(A) = A, int(bcl(A)) <
int(A) € int(U) = U. Hence A is ng"b*-closed.

Remark: 3.5
The converse of the above theorem is not true as seen from
the following example.

Example: 3.5
Let X={a,b,c,d} and =={X,®,{a},{d},{a,d},{c,d},{a,c,d}}.
Let A={c,d}. Then A is ngb**-closed but not pre closed.

Theorem: 3.6
Every gb-closed set is mg"b*-closed.

Proof

Let A be a gb-closed set of (x,t) such that ACU and U is
ng-open in X. since every ng-open set is open. bcl(A) c U.
Thus int(bcl(A)) € int(U) = U. Hence A is ng”b*-closed.

Remark: 3.6
The converse of the above theorem is not true as seen from
the following example.

Example: 3.6
Let X={ab,c,d} and ={X ®,{b},{c,d},{b,c,d}}.
A={b,d}. Then A is ngb**-closed but not a-closed.

Let

Theorem: 3.7
Every nga-closed set is mg”b*-closed.

Proof
Let A be a mga-closed set of (x,7) such that ACU and U is
ng-open in X. Then acl(A) c U, bcl(A)cacl(A)cU,
int(bcl(A)) c int(A) € int(U) = U. Hence A is mg"b*-
closed.

Remark: 3.7
The converse of the above theorem is not true as seen from
the following example.

Example: 3.7
Let X={a,b,c} and 1={X,®,{a},{b},{a,b},{a,c}}. Let
A={a}. Then A is ng"b*-closed but not nga-closed.

125



IARISET

IARJSET

ISSN (Online) 2393-8021
ISSN (Print) 2394-1588

) International Advanced Research Journal in Science, Engineering and Technology
ISO 3297:2007 Certified
Vol. 3, Issue 8, August 2016

Theorem: 3.8
Every ng"b*-closed set is ngb-closed.

Proof

Let A be a ng”b*-closed set of (x,t) such that ACU and U
is m-open in X. since A is mg"b*-closed set, bcl(A)cU
and, hence bcl(A)SU. Then A is ngb-closed.

Remark: 3.8
The converse of the above theorem is not true as seen from
the following example.

Example: 3.8

Let X={a,b,c,d}
={X,®,{a},{b},{ab},{abcl,{abdl}. Let
Then A is ngb-closed but not mg”b*-closed.

and
A={a,b,c}.

Theorem: 3.9
Every ng"b*-closed set is mgs-closed.

Proof
Let A be a ng”b*-closed set of (x,t) such that ACU and U
is m-open in X. since A is mg”b*-closed set, intbcl(A)cU
and, hence bcl(A)Sscl(A)<SU, bel(A)SU. Then A is ngs-
closed.

Remark: 3.9
The converse of the above theorem is not true as seen from
the following example.

Example: 3.9
Let X={a,b,c,d} and ={X,D,{b},{b,c}}. Let A={a,b,d}.
Then A is ngs-closed but not rgb**-closed.

Remark: 3.10

The concept of ngp-closed set and ng”"b*-closed set are
independent of each other. It is shown in the following
example.

Example: 3.10

Let X={a,b,c} and 1= {X, @, {a},{b},{a,b},{a,c}}. In this
topological space the subset A={a,b} is tgp-closed but not
ng”b*-closed set and the subset B={a} is ng”b*-closed
but not mtgp-closed set.

Remark: 3.11

The concept of mg-closed set and mg"b*-closed set are
independent of each other. It is shown in the following
example.

Example: 3.11

Let X={a,b,c,d} and = {X, (OR
{a},{b}.{a,b},{b,c}{a,b,c}.{a,b,d}}. In this topological
space the subset A={a,d} is ng-closed but not mg”b*-
closed set and the subset B={a} is mg"b*-closed but not
ng-closed set.

The above discussions are summarized in the following
diagram
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1
CEAS

(1) mg”b*-closed set, (2) g-closed set, (3) n-closed set, (4)
closed set, (5) a-closed set, (6) pre-closed set, (7) gb-
closed set, (8) mga-closed set, (9) ngb-closed set, (10) mgs-
closed set, (11) mgp-closed set, (12) ng-closed set.

IV. CHARACTERISTICS OF ng"b*-CLOSED SETS

Remark 4.1
Finite union of mg"b*-closed sets need not be mg"b*-
closed which can be seen the following example.

Example 4.1
Let X={a,b,c} with topology
={X,D,{a},{b},{a,b},{a,c}}. Let A={a} and B={b} then
both A and B are ng”b*-closed. But, AUB={a,b} is not
ng"b*-closed.

Remark 4.2
Finite intersection of mg”b*-closed sets need not be
ng”b*-closed which can be seen the following example.

Example 4.2

Let X={a,b,c,d} with topology
={X,D,{a},{b},{a,b},{ab,c},{a,b,d}}. Let A={b,d} and
B={b,c,d} then both A and B are mg"b*-closed. But,
ANB={b,d} is not mg"b*-closed.

Theorem 4.1

Let (x,7) be a topological space if AcX is ng"b*-closed
set then int(bcl(A))-A does not contain any non empty ng-
closed set.

Proof

Let A be a ng”b*-closed set in (X,1) and Fc int(bcl(A))-A
such that F is ng-closed in X. Then (X-F) is mg-open in X
and AC(X-F). since A is ng”b*-closed, int(bcl(A))c(X-
F)=Fc(X-int(bcl(A))) therefore Fc(int(bcl(A))-A)N(X-
int(bcl(A)))=F=d. Therefore int(bcl(A))-A does not
contain any non empty ng-closed set.

Theorem 4.2

If A is a mg"b*-closed and B is any set such that
AcCBCint(bcl(A)), then B is a ng"b*-closed.

Proof

Let BSU and U be mg-open. since ACBCU and A is

ng"b*-closed, int(bcl(A))cU. Now
int(bcl(B))<int(bcl(A))<U. Hence B is ng"b*-closed.
Theorem 4.3
Let (X,t) be a topological space if AcX
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Definition: 4.1
A set AcX is called wg”b*-open if and only if its
complement is mg"b*-closed in X.

Theorem 4.4
A subset AcX is tg"b*-open if and only if F<cl(bint(A))
whenever F is ng-closed and FSA.

Proof

Assume that ACX is ng"b*-open set in X. Let F be ng-
closed such that FEA. Then (X-A)c(X-F), since (X-A) is
ng”b*-closed and (X-F) is mg-open, int(bcl(X-A))<S(X-F)
=(X-cl(bcl(A)))<(X-F). Hence F<cl(bcl(A)). Conversely,
assume that F is wg-closed and FSA such that
Fccel(bel(A)). Let (X-A)SU, where U is mg-open. Then
(X-U)SA and since (X-U)<cl(bel(A))=int(bcl(X-A))<U.
Hence (X-A) is mg"b*-closed and A is ng”b*-open.

Theorem 4.5

If cl(bint(A)) = B — A and A is ng”b*-open, then B is
ng”b*-open.

Proof

Let F be a mg-closed set such that FEB. Since BSA we get
FSCA. Given A is  wg"b*  open  thus
Fccl(bint(A))<cl(bint(B)). Therefore B is ng”b*-open.

Definition 4.2
A space (X,7) is called a ng”b*-T,, space if every mg”b*-
closed set is b*-closed.

Theorem 4.6

For a topological space (X,t) the following are equivalent
1) X is ﬂZgAb*'Tl/z

2) v subset ACX, A is ng"b*-open if and only if A
is b*-open.

Proof

(1)=(2)

Let ACX be ng”b*-open. Then (X-A) is ng”b*-closed and
by (1). (X-A) is b*-closed = A is b*-open. conversely
assume A is b*-open. Then (X-A) is b*-closed. As every
b*-closed set is mg"b*-closed, (X-A) is ng"b*-closed = A
is g b*-open. (2)=(1)

Let A be a ng”b*-closed set in X. Then (X-A) is ng"b*-
open. Hence by (2) (X-A) is b*-open = A is b*-closed.
Hence X is ng"b*-Ty,.

Theorem 4.7

Let (X,7) be a mg"b*-Ty, space then every singleton set is
either mg-closed or b*-open.

Proof

Let xeX suppose {x} is not wg-closed. Then X-{x} is not
ng-open. Hence X-{x} is trivially mg”b*-closed. Since X
is mg"b*-T,,, space, X-{x} is b*-closed={x} is b*-open.

Definition 4.3

The intersection of all mg”b*-closed set containing A is
called the mg"b*-closure of A denoted by ng”"b*-cl(A).
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Theorem 4.8

Let AS(X,7) and xeX. Then xe ng"b*-cl(A) if and only if
VNA£D for every ng”b*-open set V containing x.

Proof

Suppose xe ng”b*-cl(A) and let V be an ng”b*-open set
such that X € V. Assume VNA=®, then ACX/V = ngb**-
cl(A) € X/V = x € X/V, a contradiction. Thus VNAZ#D
for every mg”b*-open set V containing x. To prove the
converse suppose X € mg’b*-cl(A) = x € X/ ng"b*-
cl(A)=V (say). Then V is a mg”b*-open and xeV. Also
since AC mg"b*-cl(A) = A ¢ V = VNA=®. Hence the
theorem.

Theorem 4.9
For set AS(X,t) if A is mg-clopen then A is mg-open, Q-
set, mg"b*-closed set.
Proof
Let A be mg-clopen. Then A is both mg-open and ng-
closed. Hence A is both open and closed. Therefore,
cl(int(A))=int(cl(A)), thus A is a Q-set. As bcl(A)<=cl(A)-
A. int(bcl(A))<int(A)=A.
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